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Fig. 2.11 Energy Data
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2.3 BAR CHARTS: STACKED AND GROUPED

Another common graph form is a stacked bar chart.
Figure 2.11 shows petroleum stocks from 1977 to 1986 in
millions of gallons for the United States, Japan, West Germany,
and all other countries of the Organisation for Economic
Co-operation and Development (U.S. Dept. Energy, 1986).
You probably read the values for the United States and the
totals quite accurately. Study the chart and see what you can
discover about the other countries.
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12 Energy Data: All Other OECD
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Did you notice in Figure 2.11 that the values for ““all other
OECD” generally tend to decrease over time? You probably
didn’t. As we shall see in Chapter 3, it is very difficult to judge
lengths that do not have a common baseline.




Fig. 2.13 Energy Data: Grouped Bar Chart
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The bars in grouped bar charts do have a common baseline.
Iowever, a grouped bar chart such as Figure 2.13 becomes
lifficult to read with even a few groups. It is difficult to
ollow the trend for a given group such as Japan because the
lata for the other groups fall between the consecutive values
or Japan. Reordering the shadings helps to make the groups
listinguishable. The pattern of the “‘all other OECD’’ group is
:ertainly clearer than in the stacked bar chart. However, trellis
lisplays, which are discussed in Chapter 5, are far clearer than
5 a grouped bar chart.



Fig. 2.14 Playfair’s Balance-of-Trade Data
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2.4 DIFFERENCE BETWEEN CURVES

Most of the graph forms that have been used until recently
were introduced by William Playfair in the late eighteenth
and early nineteenth centuries. Figure 2.14 uses Playfair’s data
(Playfair, 1786) to show exports from England and imports
to England in trade with the East Indies. We're interested in
the balance of trade, which is the difference between exports
and imports. We see that the difference is about 0.4 minus
0.2 or 0.2 in 1700, and then it increases for awhile. I'd like
you to continue sketching the difference.
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2.15 Playfair's Balance-of-Trade Data:
Imports Minus Exports
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Did you notice the hump after 1760? We miss it because
our eyes look at the closest point rather than the vertical
distance.

It is important to remember to plot the variable of interest.
f interested in the balance of trade, plot the difference rather
han just the imports and exports. If we have before and
fter data and are interested in improvement, we plot the
mprovement, not just the before and after data.
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Look at the two curves in Figure 2.16. For what values of x
are they closest together and also, farthest apart?
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Fig. 2.17 Ownership of Government Securities

OWNERSHIP OF U.S. GOVERNMENT SECURITIES
AMOUNT OUTSTANDING: END OF YEAR, 1950-51: SEASONALLY ADJUSTED, END OF QUARTER, 1952.

BILLIONS OF DOLLARS

e Y U o
INCLUDES U.S. GOVERNMENT BUDGET AGENCY ISSUES,
FEDERALLY SPONSORED AGENCY ISSUES, AND SECURITIES
|- BACKED BY MORTGAGE POOLS —{ 3000
L —{ 2500
FEDERAL RESERVE
L —| 2000
FOREIGN
PRIVATE
| NONBANK FINANCIAL | 1500
COMMERCIAL BANKS g s
PRIVATE DOMESTIC by
~ NONFINANCIAL s —{ 1000
*, . »."
OO c e
— N K ~ 500
..,._,--..---'l’ TN ‘ \
\‘ n .' : ., ,,.,..,.. N N \ \ Ll
1950 1955 1960 1965 1970 1975 1980 1985 1990




A 3 I
Lt )
T

...........

The last question appeared to be easy, but actually the
wo curves differ by a constant amount. The curves plotted
re y; = 1/x% and y, = y; + 0.6, so that one curve is always
xactly 0.6 higher than the other.

The last few charts have taught me not to trust my judgment
vhen viewing charts such as the ownership of U.S. govern-
nent securities [Board of Governors of the Federal Reserve
ystem (U.S.), 1989]. If interested in how a specific group,
ay commercial banks, changed over time, I would perform
he subtraction and plot that group over time as we did with
he exports and imports in the Playfair example.
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In Chapter 2 we saw that some common graphs do not
communicate numerical information effectively. We also
discovered other graphs that clearly communicate the infor-
mation and the patterns of the data. In this chapter we
examine briefly the tasks required to decode the information
in a graph. Cleveland and McGill (1 984) ran experiments to
determine which of these tasks we do most accurately. This
knowledge helps us to understand why some graphs work
and others don’t. We first list in alphabetical order 10 judg-
ments we make when decoding quantitative information from
graphs, describe each briefly, then order them by our ability
to perform them accurately. In some cases the descriptions
of two tasks with similar properties (e.g., area and volume)
appear together.

Creating More Effective Grapbs, by Naomi B. Robbins

AT v St e 7 omm — —_




3.1 ELEMENTARY GRAPHICAL PERCEPTION
TASKS

Angle

Area

Color hue

Color saturation

Density

Length

Position along a common scale

Position along identical, nonaligned scales
| Slope

Volume




Fig. 3.1 Angle Judgments




We make angle judgments when we read a pie chart, but we
on’t judge angles very well. These judgments are biased!;
/e underestimate acute angles (angles less than 90%) and
verestimate obtuse angles (angles greater than 90°). Also,
ngles with borizontal bisectors (when the line dividing the
ngle in two is horizontal) appear Jarger than angles with
ertical bisectors.

Biased means that we consistently under- or overestimate the true value.



Fig. 3.2 Area and Volume Judgments
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The circles on Figure 3.2 show three variables by the hori-
zontal position of the center of the circle, the vertical position,
and the area of the circle. For example, the horizontal axis
could be the months that you have held a security, the vertical
could be the price you paid in thousands of dollars, and the
areas of the circles could represent your gain. These charts
are often called bubble plots.

Area judgments are also biased. They are much less accurate
than length and position judgments. Volume judgments are
zven more biased. Stevens (1975) presents the following law:
Let x be the magnitude of an attribute of an object, such as
its length or area. According to Stevens’ law, the perceived
scale is proportional to x°, where B has been determined by
=xperimentation to range generally from 0.9 to 1.1 for length,
).6 to 0.9 for area, and 0.5 to 0.8 for volume.

When B = 1, xP = x,-and when B < 1, x¥ < x. Since the B
or area is less than 1, we perceive areas to be smaller than
hey really are. This bias is more pronounced with volumes.
[he range of beta for lengths includes 1, so we perceive
engths more accurately than areas or volumes.
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Color coding (bue®) is very effective for distinguishing data
rom various groups. For example, suppose that the triangles
1 Figure 3.3 represent data for England; the squares, France;
nd the diamonds, Italy. It is difficult visually to separate the
hree groups in the top plot. Varying density or saturation
an also be used to distinguish groups of data. Using different
ensities in the bottom plot makes this task easier, even
hough we are limited to shades of gray. If we use just one
ue, we can rank by saturation or density to show levels of a
uantitative variable. Weather maps often vary shades of red
nd blue to show temperature. But color coding with different
wes does not work well for showing numerical information
ince we don’t perceive an ordering to red, green, blue, and
ther hues.

Hue is the technical term for what we call color (red, yellow, blue, etc.).
aturation refers to the intensity of the color. As saturation increases, the
olor becomes purer; as saturation decreases, the color becomes more
ray. Density refers to the shading or amount of black.
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Fig. 3.4 Length Judgments




We all know what length means, but can you order the
engths of the five line segments in Figure 3.4? We learned
rom Stevens’ law that we judge lengths more accurately than
ireas or volumes, but judging lengths is still not easy.

To detect a difference in length between two line seg-
nents, we need a fixed percentage increase in the length.
‘or example, if one line is 99 inches and the other is 100
nches, it will be much more difficult to distinguish this 1-inch
lifference than if one line is 1 inch and the other is 2 inches,
>ven though the absolute differences are thé same. By the
wvay, line 1 is 2.1 units, line 2 is 2.2, line 3 is 2.3, line 4 is 2.4,
ind line 5 is 2.5 units.
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Fig. 3.5 Position along a Common Scale

st s




The dot plot shown in Figure 3.5 allows us to make
judgments of positions along the common horizontal scale.
Experiments by Cleveland and McGill (1984) have shown that
this is the most accurate of the elementary graphical tasks.
The dot plot was designed to take advantage of the knowledge
gained from these experiments on perception and decoding
information from graphs.




Fig. 3.6 Position along Identical,
Nonaligned Scales

Second




Note that the horizontal scales in Figure 3.6 are the same for
e three cases shown. Within the same panel we judge posi-
ion along a common scale. To compare values on separate
sanels, we compare positions along identical but nonaligned
scales. We make these judgments very accurately.

Multipanel displays are extremely useful when we have
nore than two variables. Each panel shows two variables
or one value of the third variable. For example, if the third
rariable is countries and we have data for England, France, and
taly, there would be one panel for each country. Multipanel
lisplays are discussed in Chapter 5.
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Fig. 3.7 Slope Judgments
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Readers make angle judgments to determine slopes, but we
don’t judge angles very accurately. The accuracy of judgments
of slopes of line segments depends on the angle with the
horizontal. Poor accuracy results from angles close to 90°. We
judge angles near 45° most accurately. Included in Chapter 7
is a technique called banking to 45° that will tell you how to
make use of this knowledge.

3.2 ORDERED ELEMENTARY TASKS

Page 47 shows the elementary tasks for decoding quantitative
information in alphabetical order. The following list shows the
same tasks in order of our ability to perform them accurately:

Position along a common scale

Position along identical, nonaligned scales
Length

Angle -slope

Area

Volume

Color hue - color saturation - density

N AWM A WNN -
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Fig. 3.8 Detection
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3.3 ROLE OF DISTANCE AND DETECTION

Jistance and detection also play a role in our ability to decode
nformation from graphs. The closer together objects are, the
:asier it is to judge attributes that compare them. As distance
yetween objects increases, accuracy of judgment decreases. It
s certainly easier to judge the difference in lengths of two bars
f they are next to one another than if they are pages apart.

Before we can perform any of the elementary tasks, we
nust be able to detect the data. We often cannot do so if data
»oints overlap one another; are hidden in the axes, tick marks,
r grid lines; or are too light to see. Figure 3.8 illustrates some
if these problems. Additional examples of data hidden by
ither graphical elements are provided in Chapter 6.

SUMMARY

‘reating a more effective graph involves choosing a graphical
onstruction in which the visual decoding uses tasks as high
s possible on the ordered list of elementary graphical tasks
vhile balancing this ordering with consideration of distance
nd detection.



Fig. 4.1 State Areas: Strip Plot
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.1 DISTRIBUTION OF ONE VARIABLE
.1.1 Strip Plots

. strip plot shows the distribution of data points along a
umerical axis; it is also called a one-dimensional scatterplot,
ne-dimensional data distribution grapb, or point graph.
he top strip plot in Figure 4.1 shows the distribution of the
reas of the 50 states of the United States. It shows clearly the
inge of the areas and where most of the values lie, but not
wuch more. The bottom strip plot includes some summary
atistics; the mean is shown as a solid line, the median as
dotted line, and the 25th and 75th percentiles as dashed
nes. Strip plots are sometimes used in the margins of two-
imensional displays to show the distribution of each variable
>parately.
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4.1.2 Dot Plots

Figure 4.2 shows the areas of the 50 U.S. states plotted using a
dot plot. Dot plots were introduced by Cleveland (1984) after
extensive experimentation on human perception and our
ability to decode graphical information. Since the judgments
the reader makes when decoding the information are based
on position along the common horizontal scale, these plots
display data effectively. Since it would be very difficult to fit
the names of the states on the horizontal axis, dot plots place
them on the vertical axis, and the quantitative variable, area
in thousands of square miles, on the horizontal axis. Notice
how much more informative the dot plot is than the strip
plot. Although the data appear clearly, we can still improve
‘his chart.




g

14

California
Montana

New Mexico |-
Arizona |-
Nevada |-

Colorado

Wyoming |~
regon -
ldaho |--

Utah

_Kansas |-~
Minnesota |-

Nebraska

South Dakota |-~

North Dakota

Missouri |-
Okla_homa
Washington |-
Georgia |
Michigan |-

lowa |~

Hlinois |-

Wisconsin

Florida |-
Arkansas [
Alabama |-

North Carolina |-
New York |-
Mississippi |

Pennsylvania

Louisiana |~

Tennessee |-
Ohio |-
Virginia |-

Kentucky

Indiana B

Maine (-
South Carolina |- -~

West Virginia |-
Maryland |-
Vermont |~

New Hampshire |-
Massachusetts |~
New Jersey |-

Hawaii

Connecticut |-
Delaware |-
Rhode Island |-

|
100

T 1 I
200 300 400
Area (thousand square miles)

T
500




The states appear alphabetically in Figure 4.2. In Figure 4.3
hey are listed in order of size. This presentation is much
nore informative. It is much easier to answer such questions
s: ““How many states are smaller than Indiana?”’ or ‘“What is
he median size of a state?”’ This figure could be improved
-ven. more. Notice that Texas and Alaska are so much bigger
han the other states that most of the data are on the left side
if the chart. Figure 4.4 shows how to handle this problem,
yut it is not the best choice for every situation. As in any form
f communication, we must know our audience and tailor
vhat we say to be appropriate for that audience, the readers
f the chart.
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A logarithmic scale makes it possible to plot values with
»o wide a range for a linear scale. You have probably seen
raphs plotted on a logarithmic scale, with the axis labeled 10,

00, 1000, and so on, in financial reports. Let’s review what -

e mean by logarithms. If 10? = 100, then log;,(100) = 2.
= log, x means that b is raised to the exponent y in order
) get x.

.

Bases other than 10 are also useful. Ten is useful when the
ata range over several orders of magnitude. A base of 2 is
seful for plots when we want to spread the data over a smaller
inge. Figure 4.4 shows the state areas on a logarithmic scale
ith a base of 2. This allows us to see details that were not as
ear on the linear scale: for example, the large jump in size
om Maryland to West Virginia.
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Fig. 4.5
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Logarithmic scales are useful for understanding multi-
licative factors. From Figure 4.5 we see that the state of
Vashington is approximately 2% x 1000, or 64,000 square
siles, whereas Texas is approximately 28 x 1000, or 256,000
quare miles. That tells us that Texas is the size of Washington
imes 22, or about four times the size of Washington, since
8 =26 x 22,

The horizontal axis is labeled with the logarithmic scale.
- is useful also to label the figure with the original scale, to
1ake it easier to understand. We do that on the top axis of
igure 4.5. Note the connection between the labels on the
ottom and top; 2 raised to the value of the bottom label gives
1e value of the top label. More information on logarithmic
cales is given in Chapter 7.



Fig. 4.6 Families Exhibition: Histogram
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1.1.3 Histograms

Histograms show the distribution of a set of data. Serrell
1998) examined the number of minutes that visitors spent
it museum exhibitions. To draw a histogram, the data are
yrouped into bins or intervals. For example, in the top chart
n Figure 4.6, which shows the time that visitors spent at an
:xhibition named ‘“Families,” all times up to and including 10
ninutes are in the first bin, times from 10 to 20 minutes are
n the second bin, and so on. Then the count of the number
n each bin or the percent of the total in each bin is plotted.
‘here is a trade-off between showing detail or showing a
retter overall picture. The top figure shows the shape of
he distribution more clearly, and the bottom figure shows
nore detail. Histograms do a reasonable job of showing the
hape of one data set but are not very useful for comparing
listributions.

Note that the scales of the two histograms are not the
ame. Since there are more bins in the bottom figure, there
re fewer visitors in each bin. To help visualize this difference
1scales, the rectangles on the right both have a height of six
isitors.



Fig. 4.7 Avoid Misleading Histograms
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Some software packages for drawing histograms allow the
ser to make an unreasonable choice of the number of bars to
se. For example, suppose that there are seven possible data
alues and that all are integers. The value ““1” appears five
mes, ‘2’ appears 10 times, and the others appear as shown
n the top chart in Figure 4.7. W

The x axis of the top chart goes from 0.5 to 7.5 with a range
f 7, so that each bar contains exactly one of the integers.

[owever, as the bottom chart shows, if the user requests five
ars, an unreasonable number for these data, each bar has a
7idth of 1.4, which is 7 divided by 5. The first bar goes from
.5 to 1.9, including the five occurrences of 1. The second bar
oes from 1.9 to 3.3, including the 10 occurrences of 2 and 15
ccurrences of 3. This creates a very misleading impression of

1e shape of the distribution, as shown in the bottom chart.



Fig. 4.8 Judith Leyster Exhibition: Strip Plot
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1.4 Jittering

‘he strip plot in Figure 4.8 shows the number of minutes
isitors spent at an exhibition of the artist Judith Leyster.
‘he data were collected to the nearest minute. There are 49
ybservations:

4 7 7 9 10 10 11
11 13 14 15 15 20 21
22 22 23 27 27 28 28
29 31 32 33 33 35 38
38 39 40 40 40 40 42
42 42 43 45 47 48 48
49 49 55 58 66 72 73

Jotice that there are many repeat values, so that some plotting
ymbols overlap one another.



Fig. 4.9 Judith Leyster: Jittered Strip Plot
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To make the data points distinguishable, we have added
indom noise to the data before plotting Figure 4.9. This
:chnique, called jittering, moves the data points a small,
indom amount from their original positions so that they
o longer overlap. Many software packages allow you to
tter your data. If yours does not, you can generate random
umbers with a small variance or spread to achieve this effect.

There are a number of other solutions to this problem of
verlapping data points, which appear on page 165 and in
leveland (1994).
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Fig. 4.20 Carbon Dioxide Data: Month Plot
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" Figure 4.20 shows an alternative presentation of a month
plot; it displays the seasonal component of the carbon dioxide
data (Cleveland and Terpenning, 1982). This shows clearly
that the annual cycle reaches a maximum level in May and
1 minimum level in October. It also clearly shows that the
levels of carbon dioxide in the spring are increasing, whereas
those in the fall are decreasing, sO that the range of the cycles
is increasing. The data set includes measurements of carbon
dioxide for over 30 years (from 1959 through 1990).



Fig. 5.4 Barley Data
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.2 MORE THAN THREE VARIABLES
>21 Superposed Data Sets

vIany early statistical experiments were run on agricultural
1ata One of these studied the yield of barley. Ten varieties of
)arley were planted in six sites in Minnesota in 1931 and 1932.

{ 1elds were obtained for each combination of site, year, and
ranety Therefore, there were 120 data points (10 X 6 X 2).

Yigure 5.4 shows these observations. Each panel contains a
jot plot of the yield for each variety and each year for a
specific site. Study this figure and comment on an interesting
ispect of the data.



